Cryopreservation is a process where cells or whole tissues are preserved by cooling to low sub-zero temperatures, such as (typically) 77 K or -196 °C (the boiling point of liquid nitrogen). At these low temperatures, any biological activity, including the biochemical reactions that would lead to cell death, is effectively stopped. However, when vitrification solutions are not used, the cells being preserved are often damaged due to freezing during the approach to low temperatures or warming to room temperature.
Contents
Risks
Solution effects
Extracellular ice formation
Dehydration
Intracellular ice formation
Prevention of risks
Freezable tissues
Risks : -
Phenomena which can cause damage to cells during cryopreservation are solution effects, extracellular ice formation, dehydration and intracellular ice formation.
Solution effects : -
Solution effects caused by concentration of solutes in non-frozen solution during freezing as solutes are excluded from the crystal structure of the ice. High concentrations can be very damaging.
Extracellular ice formation : -
When tissues are cooled slowly, water migrates out of cells and ice forms in the extracellular space. Too much extracellular ice can cause mechanical damage due to crushing
Dehydration : -
The migration of water causing extracellular ice formation can also cause cellular dehydration. The associated stresses on the cell can cause damage directly.
Intracellular ice formation : -
While some organisms and tissues can tolerate some extracellular ice, any appreciable intracellular ice is almost always fatal to cells.
Prevention of risks : -
Vitrification provides the benefits of cryopreservation without the damage due to ice crystal formation. In clinical cryropreservation, vitrification usually requires the addition of cryoprotectants prior to cooling. The cryoprotectants act like antifreeze: they lower the freezing temperature. They also increase the viscosity. Instead of crystallizing, the syrupy solution turns into an amorphous ice - i.e. it vitrifies. Vitrification of water is promoted by rapid cooling, and can be achieved without cryoprotectants by an extremely rapid drop in temperature (megakelvins per second). The rate that is required to attain glassy state in pure water was considered to be impossible until recently.
Two conditions usually required to allow vitrification are an increase in the viscosity and a depression of the freezing temperature. Many solutes do both, but larger molecules generally have larger effect, particularly on viscosity. Rapid cooling also promotes vitrification.
In artificial cryopreservation, the solute must penetrate the cell membrane in order to achieve increased viscosity and depressed freezing temperature inside the cell. Sugars do not readily permeate through the membrane. Those solutes that do, such as dimethyl sulfoxide, a common cryoprotectant, are often toxic in high concentration. One of the difficult compromises faced in artificial cryopreservation is limiting the damage produced by the cryoprotectant itself.
Freezable tissues : -
In general, cryopreservation is easier for thin samples and small clumps of individual cells, because these can be cooled more quickly and so require lower doses of toxic cryoprotectants.
Suitable combinations of cryoprotectants and regimes of rapid cooling and rinsing during warming often allow the successful cryopreservation of biological materials, particularly cell suspensions or thin tissue samples.
Examples include : -
Semen (which can be used successfully almost indefinitely after cryopreservation),
Blood (special cells for transfusion, or stem cells)
Tissue samples like tumors and histological cross sections
Human eggs (oocytes) See oocyte cryopreservation
Human embryos that are 2, 4 or 8 cells when frozen (pregnancies have been reported from embryos stored for 9 years. Many studies have evaluated the children born from frozen embryos, or "frosties". The result has uniformly been positive with no increase in birth defects or development abnormalities.)
In addition, efforts are underway to preserve humans cryogenically, known as cryonics. In such efforts either the brain within the head or the entire body may undergo the above process. Cryonics is in a different category from the aforementioned examples, however, for while many cryopreserved cell suspensions, thin tissue samples, and some small organs have been warmed and successfully used, this has not yet been the case for cryopreserved brains or bodies. At issue are the criteria for defining "success". Proponents of cryonics make a case that cryopreservation using present technology, particularly vitrification of the brain, may be sufficient to preserve people in an "information theoretic" sense so that they could be revived and made whole by vastly advanced future technology.
For more information, medical assessment and medical quote
send your detailed medical history and medical reports
as email attachment to
Email : - info@wecareindia.com
Call: +91 9029304141 (10 am. To 8 pm. IST)
(Only for international patients seeking treatment in India)
For a detailed evaluation send patient’s medical reports / X rays / doctors notes to info@wecareindia.com
Patient Storys
Successful heart surgery at We Care India partner hospital allows Robert Clarke to live a normal life despite a rare genetic disorder We Care india helped Robert find best super specialised surgeon for his rare conditions.